
Imaginary Machines: A Serverless Model for Cloud Applications
Michael Wawrzoniak1, Rodrigo Bruno2, Ana Klimovic1, Gustavo Alonso1

1Systems Group, Dept. of Computer Science, ETH Zurich
2INESC-ID/Técnico, U. Lisboa

ABSTRACT
Serverless Function-as-a-Service (FaaS) platforms provide applica-
tions with resources that are highly elastic, quick to instantiate,
accounted at fine granularity, and without the need for explicit
run-time resource orchestration. This combination of the core prop-
erties underpins the success and popularity of the serverless FaaS
paradigm. However, these benefits are not available to most cloud
applications because they are designed for networked virtual ma-
chines/containers environments. Since such cloud applications can-
not take advantage of the highly elastic resources of serverless and
require run-time orchestration systems to operate, they suffer from
lower resource utilization, additional management complexity, and
costs relative to their FaaS serverless counterparts.

We propose Imaginary Machines, a new serverless model for
cloud applications. This model (1.) exposes the highly elastic re-
sources of serverless platforms as the traditional network-of-hosts
model that cloud applications expect, and (2.) it eliminates the
need for explicit run-time orchestration by transparently manag-
ing application resources based on signals generated during cloud
application executions. With the Imaginary Machines model, un-
modified cloud applications become serverless applications. While
still based on the network-of-host model, they benefit from the
highly elastic resources and do not require runtime orchestration,
just like their specialized serverless FaaS counterparts, promising
increased resource utilization while reducing management costs.
ACM Reference Format:
Michael Wawrzoniak1, Rodrigo Bruno2, Ana Klimovic1, Gustavo Alonso1,
1SystemsGroup, Dept. of Computer Science, ETHZurich, 2INESC-ID/Técnico,
U. Lisboa . 2025. Imaginary Machines: A Serverless Model for Cloud Appli-
cations. In Proceedings of The 2nd Workshop on Serverless Systems, Applica-
tions and Methodologies (SESAME’24). ACM, New York, NY, USA, 3 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Cloud users today can choose between two main options for devel-
oping and managing their applications: renting VMs on-demand or
using providers’ serverless compute and storage services. VMs come
with a familiar programming/execution environment of network-of-
hosts, but provide a lower level of resource elasticity, and users need
to explicitly manage the infrastructure at run-time (e.g., using clus-
ter managers, turn machines on/off based on the application load.)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SESAME’24, 22-25 April 2024, Athens, Greece,
© 2025 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Serverless platforms automate infrastructure management and pro-
vide highly elastic resources but use a restrictive FaaS programming
model with limitations that reduce its broader applicability [10].
To overcome the limitations, researchers have been exploring new
serverless platform designs [13], additional infrastructure [11], and
constructing new FaaS-specialized applications [12].

This paper explores how to get the best of both worlds – ap-
plying the serverless paradigm to cloud applications designed for
networked VMs with the familiar network-of-hosts programming
model. We explore how to automate infrastructure orchestration à
la serverless for cloud applications. We propose a serverless model
for cloud applications, which we call Imaginary Machines, that
preserves the familiar, well-loved network-of-hosts programming
model of VM-based applications with the orchestration automation
of serverless platforms. We also discuss approaches to realize this
model and propose an overlay approach based on an evolution of
Boxer [16] to realize the model on publicly available FaaS resources.

2 SERVERLESS CLOUD APPLICATIONS
We believe that cloud applications based on the network-of-hosts
model can also be serverless, taking advantage of highly elastic
resources and automated infrastructure orchestration. Our perspec-
tive is based on the following observations and insights.

Serverless resources can suit cloud applications: Although
commonly viewed as lightweight and restricted, resources made
available by FaaS can match many cloud application requirements.
FaaS platforms continue to reduce limitations and increase resource
limits, but even today’s public platforms, such as AWS Lambda [4],
can match many cloud application requirements of memory, com-
pute capacity, state persistence, and reliability for some use cases.

Resources available in today’s FaaS platforms have been increas-
ing in size to the point where functions available today are compara-
ble to the largest VMs available 15 years ago (memory and cpu), the
environment in which many of the popular cloud applications have
been originally designed for [6, 8]. AWS Lambda functions can be
configured up to 10GB of memory and 6vCPU cores [5], matching
largest AWS EC2 CPU instances introduced 12 years earlier [2].

Second, the wide adoption of disaggregated storage resulted in
cloud applications that are structured into multiple tiers of func-
tionality, where many services do not depend on the local persis-
tent state, which makes these layers a match for the ephemeral
state provided by publicly available FaaS functions. For example, a
completely unmodified application logic tier of a popular Death-
StarBench [9] microservice benchmark runs in AWS Lambda [14].

Third, FaaS functions are becoming more reliable and are no
longer short-lived. The maximum execution time of FaaS functions
has been increasing, in AWS Lambda, it is now 15 minutes [3].

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

SESAME’24, 22-25 April 2024, Athens, Greece,
Michael Wawrzoniak1 , Rodrigo Bruno2 , Ana Klimovic1 , Gustavo Alonso1

1Systems Group, Dept. of Computer Science, ETH Zurich
2INESC-ID/Técnico, U. Lisboa

Unbundling serverless resources from programming model:
Serverless resources do not have to be bundled with the FaaS pro-
gramming model, even in mainstream publicly available serverless
platforms such as AWS Lambda. An evolution of Boxer [16], a plat-
form providing the network-of-hosts programming model on top of
AWS Lambda FaaS, has been demonstrated to run unmodified off-
the-shelf distributed data processing systems such as Apache Spark
and Drill [15], unmodified Apache Zookeeper, and the logic layer
of the DeathStarBench microservice benchmark [14, 17]. These un-
modified cloud applications run on AWS Lambda functions just as
if they were running on VM-based networked hosts, each function
instance having a routable network address, a resolvable hostname,
and function-to-function network transport.

These projects demonstrated the feasibility of using the network-
of-hosts model with serverless resources. However, they also took
a step back by reintroducing the need for a serverful orchestration
system (docker-compose [7] was used in [15]) to manage execu-
tions of individual functions.

Serverless orchestration for cloud applications: We believe
that automated infrastructure orchestration, an essential property
of serverless, can also be realized for network-of-hosts model cloud
applications. We first describe a perspective on automated resource
orchestration of existing FaaS and then propose how to achieve an
analogous mechanism for the network-of-hosts model.

The FaaS programming model enables automated infrastructure
orchestration by embedding resource allocation signals in appli-
cation control flow. The two signals generated during application
execution are (1.) function invocation resulting in resource alloca-
tion of a function instance (and invocation of the function event
handler), and (2.) function handler exit, when resources are re-
leased. As a ubiquitous and essential optimization, the resources
are normally not released immediately after function handlers exit,
instead, to provide low-latency warm-starts, function instances
are first suspended for a limited time before they are terminated.
FaaS applications are factored into collections of functions (possibly
structured as dataflows [1]) that compose by invoking each other
(directly or by producing events) based on internal control flow.
Each such function invocation is a resource allocation signal used
by FaaS platforms to dynamically rescale resources and create the
illusion of avoiding resource orchestration.

Cloud applications based on the network-of-hosts model execute
processes on hosts that ’compose’ by communicating with each
other via a network. The analogous resource allocation signals to
those embedded in FaaS functions (above) are also present in cloud
applications. Generally, any signal that indicates that any applica-
tion process on a host function could be runnable is potentially a
resource allocation signal for that host function (analogous to a
function invocation). Similarly, any signal that indicates that all
application processes of a host are idle is a resource release signal
for that host function (analogous to a function event handler exit-
ing). To achieve the automated infrastructure orchestration for the
network-of-hosts model, the platform must observe such signals
and perform the necessary on-demand resource allocation actions
of allocating and releasing host functions, just like in FaaS.

Although not as explicit as in FaaS, cloud applications provide
such signals; these signals are already used by local operating sys-
tems of running hosts to perform local application process sched-
uling (e.g., in response to a signal indicating that data is available
for a waiting blocked process, the scheduler may choose to make
the process runnable). However, in contrast to VM-based infras-
tructure, to achieve serverless fine-grain scaling, host functions of
cloud applications must be allocated on demand only when needed
and released (suspended or terminated) when not used. This means
that, instead of the host’s local operating system, which may be
suspended or not even started, the appropriate resource allocation
signals must be observed and acted on externally to the host func-
tion. Fortunately, assuming that cloud applications run entirely on
the serverless platform, the allocation signals for all non-running
host functions must be generated by (and observable at) the run-
ning host functions or external network requests, all observable by
the serverless platform. As a concrete example, when application
processes initiate network communication to a valid destination
host that is not running (e.g., during initialization or scaling up),
the platform must use this signal to allocate the new destination
host function automatically and in a transparent way to the already
running application processes. Conversely, as application processes
on a running host become idle, the platform suspends and eventu-
ally possibly terminates the host, automatically releasing unused
application resources. More signaling scenarios must be handled,
which we do not describe here, but based on this approach, the
resources used by network-of-hosts applications are allocated and
released on-demand and transparently to the application, providing
a form of automated infrastructure orchestration.

In order to provide application transparency, the resource alloca-
tion latencies (time to start or resume a host) must be sufficiently
short (and infrequent) to be within tolerable network latencies of
the applications. Fortunately, as evidenced by publicly available
systems such as AWS Lambda, latency to instantiate new host func-
tions (cold ∼200ms) can be in the range of wide-area network laten-
cies, suggesting they are within the tolerable range of connection
timeouts that many cloud applications can handle.

3 IMAGINARY MACHINES MODEL
We refer to the serverless execution model of cloud applications as
the Imaginary Machines (IM) model.

• From the application perspective, the Imaginary Machines
model presents a network-of-hosts programming model,
where all possible (configured) hosts are already instanti-
ated. Cloud application processes run imagining as if all
network destinations were already running and available.
Significantly, the model does not include any explicit run-
time infrastructure orchestration just like in the FaaS model).

• From the platform perspective, the system must support the
programming model that the applications expect (above)
while performing on-demand, automatic, transparent, and
fine-grained resource orchestration for the application.

We are in the process of realizing a version of the IM model
by extending Boxer [14] serverless overlay system that already
provides network-of-hosts model on top of AWS Lambda FaaS by
also including the necessary function allocation mechanism.

Imaginary Machines: A Serverless Model for Cloud Applications
SESAME’24, 22-25 April 2024, Athens, Greece,

4 CONCLUSION
We motivated and described an alternative serverless model for
cloud applications called Imaginary Machines. Given that the dom-
inant programming model in the cloud is based on the network-
of-hosts model, providing applications based on that model with
access to serverless resource elasticity and reduced operational
complexity has the potential for a great impact.

REFERENCES
[1] [n. d.]. AWS Step Functions. https://aws.amazon.com/step-functions/
[2] 2008. Amazon EC2 now provides High-CPU instance types. Retrieved 2023-12-

03 from https://aws.amazon.com/articles/feature-guide-amazon-ec2-high-cpu-
instance-types/

[3] 2018. AWS Lambda enables functions that can run up to 15 minutes. Retrieved
2024-01-27 from https://aws.amazon.com/about-aws/whats-new/2018/10/aws-
lambda-supports-functions-that-can-run-up-to-15-minutes/

[4] 2020. AWS Lambda. Retrieved 2020-08-17 from https://aws.amazon.com/lambda
[5] 2020. AWS Lambda now supports up to 10 GB of memory and 6

vCPU cores for Lambda Functions. Retrieved 2024-01-27 from
https://aws.amazon.com/about-aws/whats-new/2020/12/aws-lambda-
supports-10gb-memory-6-vcpu-cores-lambda-functions/

[6] 2023. Apache Spark history. Retrieved 2023-12-03 from https://spark.apache.
org/history.html

[7] 2023. Docker Compose. Retrieved 2023-07-27 from https://docs.docker.com/
compose/

[8] 2023. Initial ZooKeeper code contribution from Yahoo! Retrieved 2023-12-03
from https://issues.apache.org/jira/browse/ZOOKEEPER-1

[9] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan Katarki,
Ariana Bruno, Justin Hu, Brian Ritchken, Brendon Jackson, Kelvin Hu, Meghna
Pancholi, Yuan He, Brett Clancy, Chris Colen, Fukang Wen, Catherine Leung,
Siyuan Wang, Leon Zaruvinsky, Mateo Espinosa, Rick Lin, Zhongling Liu, Jake
Padilla, and Christina Delimitrou. 2019. An Open-Source Benchmark Suite for
Microservices and Their Hardware-Software Implications for Cloud & Edge
Systems. In ASPLOS.

[10] Joseph M. Hellerstein, Jose M. Faleiro, Joseph Gonzalez, Johann Schleier-Smith,
Vikram Sreekanti, Alexey Tumanov, and Chenggang Wu. 2019. Serverless Com-
puting: One Step Forward, Two Steps Back. In CIDR.

[11] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle,
and Christos Kozyrakis. 2018. Pocket: Elastic Ephemeral Storage for Serverless
Analytics. In OSDI. 427–444.

[12] Ingo Müller, Renato Marroquín, and Gustavo Alonso. 2020. Lambada: Interactive
Data Analytics on Cold Data Using Serverless Cloud Infrastructure. In SIGMOD.

[13] Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin, Johann Schleier-Smith,
Joseph Gonzalez, Joseph M. Hellerstein, and Alexey Tumanov. 2020. Cloudburst:
Stateful Functions-as-a-Service. PVLDB (2020).

[14] Michael Wawrzoniak, Rodrigo Bruno, Ana Klimovic, and Gustavo Alonso.
2024. Boxer: FaaSt Ephemeral Elasticity for Off-the-Shelf Cloud Applications.
arXiv:2204.5701258 [cs.DC]

[15] Michael Wawrzoniak, Gianluca Moro, Rodrigo Bruno, and Gustavo Alonso. 2024.
Off-the-shelf Data Analytics on Serverless. In CIDR.

[16] Michael Wawrzoniak, Ingo Müller, Rodrigo Bruno, and Gustavo Alonso. 2021.
Boxer: Data Analytics on Network-enabled Serverless Platforms. In CIDR.

[17] Michael Wawrzoniak, Ingo Müller, Rodrigo Bruno, Ana Klimovic, and Gustavo
Alonso. 2022. Short-lived Datacenters. arXiv:2202.06646 [cs.DC]

https://aws.amazon.com/step-functions/
https://aws.amazon.com/articles/feature-guide-amazon-ec2-high-cpu-instance-types/
https://aws.amazon.com/articles/feature-guide-amazon-ec2-high-cpu-instance-types/
https://aws.amazon.com/about-aws/whats-new/2018/10/aws-lambda-supports-functions-that-can-run-up-to-15-minutes/
https://aws.amazon.com/about-aws/whats-new/2018/10/aws-lambda-supports-functions-that-can-run-up-to-15-minutes/
https://aws.amazon.com/lambda
https://aws.amazon.com/about-aws/whats-new/2020/12/aws-lambda-supports-10gb-memory-6-vcpu-cores-lambda-functions/
https://aws.amazon.com/about-aws/whats-new/2020/12/aws-lambda-supports-10gb-memory-6-vcpu-cores-lambda-functions/
https://spark.apache.org/history.html
https://spark.apache.org/history.html
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://issues.apache.org/jira/browse/ZOOKEEPER-1
https://arxiv.org/abs/2204.5701258
https://arxiv.org/abs/2202.06646

	Abstract
	1 Introduction
	2 Serverless Cloud Applications
	3 Imaginary Machines Model
	4 Conclusion
	References

